Oblíbené (0)
Košík
je prázdný

Unsupervised Machine Translation

Ivana Kvapilíková

How Machines Learn to Understand Across Languages

Cena v prodejně: 400 Kč
Cena při objednávce v e-shopu:
-40
360

U dodavatele

10-20ks na objednávku.

V prodejně do 5 dnů

K vyzvednutí po 15.12 13:00

Odesíláme do 5 dnů

od 59 Kč, dodání út 16.12

Podrobnosti o dodání

Kdy můžu zboží mít?

Produkt je u dodavatele, odesíláme ho ihned po naskladnění.

Osobní odběr

Prodejna Benešov - ZDARMApo 15.12

Výdejní místa

One Box, One Point59 Kčút 16.12
Zásilkovna69 Kčút 16.12
Zásilkovna SK95 Kčst 17.12

Dodání na adresu v ČR

Stažení online0 Kčpo 15.12
One Curier65 Kčút 16.12
Zásilkovna - domů99 Kčút 16.12
Zásilkovna SK - domů139 Kčst 17.12

Uvedený termín u dodání domů a na výdejní místa je orientační. Balíček může přijít v rozmezí dvou dní po termínu.

For decades, machine translation between natural languages fundamentally relied on human-translated documents known as parallel texts, which provide direct correspondences between source and target sentences. The notion that translation systems could be trained on non-parallel texts, independently written in different languages, was long considered unrealistic. Fast forward to the era of large language models (LLMs), and we now know that given their sufficient computational resources, LLMs exploit incidental parallelism in their vast training data, i.e., they identify parallel messages across languages and learn to translate without explicit supervision. LLMs have since demonstrated the ability to perform translation tasks with impressive quality, rivaling systems specifically trained for translation. This monograph explores the fascinating journey that led to this point, focusing on the development of unsupervised machine translation. Long before the rise of LLMs, researchers were exploring the idea that translation could be achieved without parallel data. Their efforts centered on motivating models to discover cross-lingual correspondences through various techniques, such as the mapping of word embedding spaces, back-translation, or parallel sentence mining. Although much of the research described in this monograph predates the mainstream adoption of LLMs, the insights gained remain highly relevant. They offer a foundation for understanding how and why LLMs are able to translate.
EAN9788024660783
ISBN9788024660783
Datum vydání10. 07. 2025
Vazbabrožovaná vazba
Počet stran:176
Nakladatelství:Karolinum
Jazyk:anglicky